Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; : 100769, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641227

RESUMEN

BACKGROUND: The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. METHODS: In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA.2.2 breakthrough infections were enrolled. Serum samples were collected at Days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. RESULTS: The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. CONCLUSION: Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.

2.
Foodborne Pathog Dis ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608217

RESUMEN

This study aimed to assess the clinical characteristics, treatment, and prognosis of osteoarticular brucellosis. We conducted a retrospective study enrolling brucellosis patients from the Sixth People's Hospital of Shenyang between September 2014 and June 2019. A total of 1917 participants were admitted during this period. After applying propensity score matching, we retrospectively analyzed 429 patients with osteoarthritis and 429 patients without osteoarthritis. The primary outcome was treatment completion. The secondary outcome was symptom disappearance and seroconversion. Brucellosis patients with osteoarthritis had longer treatment course (160 [134.3-185.7] vs. 120 [102.3-137.7] d, p = 0.008) than those without osteoarthritis. The most common involved site was lumbar vertebrae (290 [67.6%]) in brucellosis patients with osteoarthritis. Longer symptom duration (90 [83.0-97.0] vs. 42 [40.2-43.8], p < 0.001) along with no significant difference in seroconversion (180 [178.8-181.2] vs. 180 [135.1-224.9], p = 0.212) was observed in osteoarthritis patients with treatment course >90 d. Peripheral joint involvement (adjusted hazard ratio [95% confidence interval] 1.485 [1.103-1.999]; p = 0.009) had a shorter symptom duration compared with shaft joint involvement. No significant differences were observed in treatment therapy between doxycycline plus rifampin (DR) or plus cephalosporins (DRC) in treatment course (p = 0.190), symptom persistence (p = 0.294), and seroconversion (p = 0.086). Lumbar vertebra was the most commonly involved site. Even if all symptoms disappeared, Serum agglutination test potentially remained positive in some patients. Compared with peripheral arthritis, shaft arthritis was the high-risk factor for longer symptom duration. The therapeutic effects were similar between DR and DRC. In summary, our study provided important insights into the clinical characteristics, treatment, and outcomes of osteoarticular brucellosis. Clinical Trial Registration number: NCT04020536.

3.
PLoS One ; 19(1): e0297022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38271452

RESUMEN

Previous studies have primarily investigated scientists' direct impact on technological performance. Expanding on this, the study explores the nuanced ways and timing through which scientists influence team-level technological performance. By integrating knowledge-based and network dynamics theories, the study establishes and assesses membership turnover as a significant mediator of the science-technological performance process. Furthermore, it investigates the moderating effects of team internationalization and coreness on the mediation effects. Employing an unbalanced panel dataset from Huawei and Intel from 2000 to 2022, the study applied the Tobit and Negative Binomial models and conducted robustness tests for data analysis. The findings support the indirect influence of scientists within an invention team on the quantity and quality of inventions through membership turnover. Moreover, team internationalization diminishes the relationship between membership turnover and the quantity and quality of inventions, thereby impairing scientists' indirect effects on technological performance through membership turnover. Team coreness enhances the relationship between membership turnover and the quantity and quality of inventions, strengthening the indirect impact of scientists on these dimensions through membership turnover.


Asunto(s)
Análisis de Datos , Tecnología , Manipulación de Alimentos , Bases del Conocimiento , Modelos Estadísticos , Invenciones , China
4.
Emerg Microbes Infect ; 13(1): 2292071, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38054806

RESUMEN

Data on reinfection in large Asian populations are limited. In this study, we aimed to evaluate the reinfection rate, disease severity, and time interval between the infections in the symptomatic and asymptomatic populations which are firstl infected with BA.2 Omicron Variant. We retrospectively included adult patients with COVID-19 discharged from four designated hospitals between 27 April 2021 and 30 November 2022, who were interviewed via telephone from 29 January to 1 March 2023. Univariable and multivariable analyses were used to explore risk factors associated with reinfection. A total of 16,558 patients were followed up, during the telephone survey of an average of 310.0 days, 1610 (9.72%) participants self-reported reinfection. The mean time range of reinfection was 257.9 days. The risks for reinfection were analysed using multivariable logistic regression. Patients with severe first infection were at higher risk for reinfection (aORs, 2.50; P < 0.001). The male (aORs,0.82; P < 0.001), the elderly (aORs, 0.44; P < 0.001), and patients with full vaccination (aORs, 0.67; P < 0.001) or booster (aORs, 0.63; P < 0.001) had the lower risk of reinfection. Patients over 60 years of age (aORs,9.02; P = 0.006) and those with ≥2 comorbidities (aORs,11.51; P = 0.016). were at higher risk for severe reinfection. The number of clinical manifestations of reinfection increases in people with severe first infection (aORs, 2.82; P = 0.023). The overall reinfection rate was 9.72%, and the reinfection rate of Omicron-to-Omicron subvariants was 9.50% at one year. The severity of Omicron-Omicron reinfection decreased. Data from our clinical study may provide clinical evidence and bolster response preparedness for future COVID-19 reinfection waves.


Asunto(s)
COVID-19 , Reinfección , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , China , Hospitales
5.
J Hepatol ; 80(1): 31-40, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827470

RESUMEN

BACKGROUND & AIMS: Immunotherapy for chronic hepatitis B virus (HBV) infection has not yet demonstrated sufficient efficacy. We developed a non-integrative lentiviral-vectored therapeutic vaccine for chronic hepatitis B and tested its antiviral effects in HBV-persistent mice and two inactive HBsAg carriers. METHODS: Lentiviral vectors (LVs) encoding the core, preS1, or large HBsAg (LHBs) proteins of HBV were evaluated for immunogenicity in HBV-naïve mice and therapeutic efficacy in a murine model of chronic HBV infection. In addition, two inactive HBsAg carriers each received two doses of 5×107 transduction units (TU) or 1×108 TU of lentiviral-vectored LHBs (LV-LHBs), respectively. The endpoints were safety, LHBs-specific T-cell responses, and serum HBsAg levels during a 24-week follow-up. RESULTS: In the mouse models, LV-LHBs was the most promising in eliciting robust antigen-specific T cells and in reducing the levels of serum HBsAg and viral load. By the end of the 34-week observation period, six out of ten (60%) HBV-persistent mice vaccinated with LV-LHBs achieved serum HBsAg loss and significant depletion of HBV-positive hepatocytes in the liver. In the two inactive HBsAg carriers, vaccination with LV-LHBs induced a considerable increase in the number of peripheral LHBs-specific T cells in one patient, and a weak but detectable response in the other, accompanied by a sustained reduction of HBsAg (-0.31 log10 IU/ml and -0.46 log10 IU/ml, respectively) from baseline to nadir. CONCLUSIONS: A lentiviral-vectored therapeutic vaccine for chronic HBV infection demonstrated the potential to improve HBV-specific T-cell responses and deplete HBV-positive hepatocytes, leading to a sustained loss or reduction of serum HBsAg. IMPACT AND IMPLICATIONS: Chronic HBV infection is characterized by an extremely low number and profound hypo-responsiveness of HBV-specific T cells. Therapeutic vaccines are designed to improve HBV-specific T-cell responses. We show that immunization with a lentiviral-vectored therapeutic HBV vaccine was able to expand HBV-specific T cells in vivo, leading to reductions of HBV-positive hepatocytes and serum HBsAg.


Asunto(s)
Hepatitis B Crónica , Humanos , Ratones , Animales , Hepatitis B Crónica/prevención & control , Hepatitis B Crónica/tratamiento farmacológico , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Lentivirus/genética , Vacunas contra Hepatitis B/uso terapéutico , Vacunación
7.
Molecules ; 28(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005355

RESUMEN

Ochratoxins, a common class of mycotoxin in capsicum, and techniques and methods for the determination of mycotoxins in spices have been increasingly developed in recent years. An innovative and eco-friendly method of dispersive liquid-liquid microextraction (DLLME) was demonstrated in this study, based on a synthesized deep eutectic solvent (DES) combined with LC-MS/MS, for the quantification and analysis of two ochratoxins in capsicum. The DES-DLLME method parameters entail selecting the DES type (thymol:decanoic acid, molar ratio 1:1) and DES volume (100 µL). The volume of water (3 mL) and salt concentration (0 g) undergo optimization following a step-by-step approach to achieve optimal target substance extraction efficiency. The matrix effect associated with the direct detection of the target substance in capsicum was significantly reduced in this study by the addition of isotopic internal standards corresponding to the target substance. This facilitated optimal conditions wherein quantitative analysis using LC-MS/MS revealed a linear range of 0.50-250.00 µg/mL, with all two curves calibrated with internal standards showing correlation coefficients (r2) greater than 0.9995. The method's limits of detection (LODs) and limits of quantification (LOQs) fell in the ranges of 0.14-0.45 µg/kg and 0.45-1.45 µg/kg, respectively. The method's spiked recoveries ranged from 81.97 to 105.17%, indicating its sensitivity and accuracy. The environmental friendliness of the technique was assessed using two green assessment tools, AGREE and complexGAPI, and the results showed that the technique was more in line with the concept of sustainable development compared to other techniques for detecting ochratoxins in capsicum. Overall, this study provides a new approach for the determination of mycotoxins in a complex food matrix such as capsicum and other spices using DES and also contributes to the application of green analytical chemistry methods in the food industry.


Asunto(s)
Capsicum , Microextracción en Fase Líquida , Micotoxinas , Ocratoxinas , Cromatografía Liquida , Disolventes Eutécticos Profundos , Microextracción en Fase Líquida/métodos , Espectrometría de Masas en Tándem/métodos , Solventes/química , Límite de Detección , Cromatografía Líquida de Alta Presión
8.
Front Cell Infect Microbiol ; 13: 1211732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37674580

RESUMEN

Backgrounds: Differentiation between benign and malignant diseases in EBV-positive patients poses a significant challenge due to the lack of efficient diagnostic tools. Metagenomic Next-Generation Sequencing (mNGS) is commonly used to identify pathogens of patients with fevers of unknown-origin (FUO). Recent studies have extended the application of Next-Generation Sequencing (NGS) in identifying tumors in body fluids and cerebrospinal fluids. In light of these, we conducted this study to develop and apply metagenomic methods to validate their role in identifying EBV-associated malignant disease. Methods: We enrolled 29 patients with positive EBV results in the cohort of FUO in the Department of Infectious Diseases of Huashan Hospital affiliated with Fudan University from 2018 to 2019. Upon enrollment, these patients were grouped for benign diseases, CAEBV, and malignant diseases according to their final diagnosis, and CNV analysis was retrospectively performed in 2022 using samples from 2018 to 2019. Results: Among the 29 patients. 16 of them were diagnosed with benign diseases, 3 patients were diagnosed with CAEBV and 10 patients were with malignant diseases. 29 blood samples from 29 patients were tested for mNGS. Among all 10 patients with malignant diagnosis, CNV analysis suggested neoplasms in 9 patients. Of all 19 patients with benign or CAEBV diagnosis, 2 patients showed abnormal CNV results. The sensitivity and specificity of CNV analysis for the identification for tumors were 90% and 89.5%, separately. Conclusions: The application of mNGS could assist in the identification of microbial infection and malignancies in EBV-related diseases. Our results demonstrate that CNV detection through mNGS is faster compared to conventional oncology tests. Moreover, the convenient collection of peripheral blood samples adds to the advantages of this approach.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Fiebre de Origen Desconocido , Neoplasias , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Metagenómica , Estudios Retrospectivos , Neoplasias/complicaciones , Neoplasias/diagnóstico
9.
Am J Transl Res ; 15(1): 47-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36777850

RESUMEN

OBJECTIVE: Timely and precise etiology diagnosis is crucial for optimized medication regimens and better prognosis in central nervous system infections (CNS infections). We aimed to analyze the impact of mNGS tests on the management of patients with CNS infections. METHODS: We conducted a single-center retrospective cohort study to analyze the value of mNGS in clinical applications. Three hundred sixty-nine patients with a CNS infection diagnosis were enrolled, and their clinical data were collected. CDI and DDI were defined in our study to describe the intensity of drug use in different groups. We used LOH and mRS to evaluate if the application of mNGS can benefit CNS infected patients. RESULTS: mNGS reported a 91.67% sensitivity in culture-positive patients and an 88.24% specificity compared with the final diagnoses. Patients who participated with the mNGS test had less drug use, both total (58.77 vs. 81.18) and daily (22.6 vs. 28.12, P < 0.1, McNemar) intensity of drug use, and length of hospitalization (23.14 vs. 24.29). Patients with a consciousness grading 1 and 3 had a decrease in CDI (Grade 1, 86.49 vs. 173.37; Grade 3, 48.18 vs. 68.21), DDI (Grade 1, 1.52 vs. 2.72; Grade 3, 2.3 vs. 2.45), and LOH (Grade 1, 32 vs. 40; Grade 3, 21 vs. 23) with the application of mNGS. Patients infected with bacteria in the CNS had a reduced CDI, DDI, and LOH in the mNGS group. This was compared with the TraE group that had 49% of patients altered medication plans, and 24.7% of patients reduced drug intensity four days after mNGS reports. This was because of the reduction of drug types. CONCLUSION: mNGS showed its high sensitivity and specificity characteristics. mNGS may assist clinicians with more rational medication regimens and reduce the drug intensity for patients. The primary way of achieving this is to reduce the variety of drugs, especially for severe patients and bacterial infections. mNGS has the ability of improving the prognosis of CNS infected patients.

10.
Microbiol Spectr ; 11(1): e0137822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36602351

RESUMEN

Accurate and timely etiological diagnosis is crucial for bloodstream infections (BSIs) due to their high disability and mortality. We conducted a single-center prospective cohort study to compare the digital droplet PCR (ddPCR) assay with traditional blood culture. A total of 169 blood samples from 122 patients with suspected BSIs were collected, mostly from the department of infectious diseases, the emergency department, and the intensive care units, and the clinical data were also recorded. Nucleic acid was extracted from the blood samples, and a 5-fluorescent-channel droplet digital PCR assay was performed and then fed back with the pathogen and its copies. In BSI patients, ddPCR reported an overall 85.71% (12/14) (95% confidence interval [CI], 56.15 to 97.48%) sensitivity, 100% (7/7) (95% CI, 56.09 to 100.00%) and 71.43% (5/7) (95% CI, 30.26 to 94.89%) sensitivity in patients without empirical treatment and in empirically treated patients, respectively. Compared to traditional blood culture, the overall detection rate of ddPCR was significantly higher, 11.27% (16/142) (95% CI, 6.78 to 17.93%) versus 30.28% (43/142) (95% CI, 23.01 to 38.64%), and the extra detection rate of ddPCR was 19.01% (27/142) (95% CI, 13.11 to 26.63%). Of the ddPCR-positive culture-negative cases, 74.19% (23/31) (95% CI, 55.07 to 87.46%) were consistent with the final clinical diagnosis, including 10 bacteria and fungi. The detection rate of ddPCR was significantly higher in patients with white blood cell (WBC) counts of >10 · 109/L, C-reactive protein (CRP) of >70 mg/L, or procalcitonin (PCT) of >0.9 ng/L. Pathogen loads detected by ddPCR are correlated with WBC, CRP, and especially, PCT levels, precisely and rapidly reflecting clinical disease progression. ddPCR has an important guiding value for the clinical use of antibiotics to achieve the best pathogen coverage and the antibacterial effect. Collectively, ddPCR showed a great diagnostic performance in BSIs and had an overall higher detection rate than blood culture. In addition, ddPCR could be used to dynamically monitor the disease progression and provide medication guidance on antibiotic use. IMPORTANCE ddPCR is a promising method to address the current challenges of BSI diagnosis and precise treatment, as it is highly efficient in DNA detection. It shortens the identification of BSI-related pathogens from several days of traditional bacterial culture to 4 to 5 h. It is extremely sensitive and more tolerant to PCR inhibitors, which may facilitate the amplification and enable the detection of a meager amount of DNA fragments in detecting BSI-related pathogens and drug-resistant genes. It can identify almost 20 pathogens in one reaction, which reduces the usage of clinical blood samples to no more than 2 mL. Additionally, dynamic monitoring, assessment of pathogens, and antibiotic resistance genes in patients could be used to guide timely and precise adjustment of antimicrobial prescription. The short turnaround time of ddPCR may have the potential to guide antimicrobial treatment in the very early stage of sepsis and reduce the mortality and disability rate of sepsis.


Asunto(s)
Sepsis , Humanos , Estudios Prospectivos , Reacción en Cadena de la Polimerasa , Sepsis/diagnóstico , Sepsis/microbiología , Proteína C-Reactiva , Progresión de la Enfermedad
11.
Vaccines (Basel) ; 10(11)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36366398

RESUMEN

BACKGROUND: Metabolites are involved in biological process that govern the immune response to infection and vaccination. Knowledge of how metabolites interact with the immune system during immunization with the COVID-19 vaccine is limited. Here, we report that the serum metabolites are correlated with the magnitude of the antibody response in recipients receiving the inactivated COVID-19 vaccine, which provides critical information for studying metabolism regarding the human immune response to vaccination. METHODS: 106 healthy volunteers without history of SARS-CoV-2 infection or vaccination were prospectively enrolled to receive the primary series of two doses of inactivated whole-virion SARS-CoV-2 vaccine. The serum samples were collected 2-4 weeks after the second dose. The magnitude of the anti-RBD antibody was quantified using surrogate virus neutralization tests. The profile of metabolites in serum was identified using untargeted metabolomics analysis. RESULTS: The level of anti-RBD antibody 14-28 days after the second dose was significantly elevated and its interpersonal variability was diverse in a wide range. Thirty-two samples at extremes of the anti-RBD antibody titer were selected to discover the metabolic correlates. Two hundred and fifteen differential metabolites associated with antibody response independent of body mass index were identified. Pregnenolone and sphingolipid metabolism might be involved in the modulation of the human antibody response to the inactivated COVID-19 vaccine. CONCLUSION: We discovered key metabolites as well as those with a related functional significance that might modulate the human immune response to vaccination.

12.
Cell Discov ; 8(1): 114, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270988

RESUMEN

SARS-CoV-2 vaccine booster dose can induce a robust humoral immune response, however, its cellular mechanisms remain elusive. Here, we investigated the durability of antibody responses and single-cell immune profiles following booster dose immunization, longitudinally over 6 months, in recipients of a homologous BBIBP-CorV/BBIBP-CorV or a heterologous BBIBP-CorV/ZF2001 regimen. The production of neutralizing antibodies was dramatically enhanced by both booster regimens, and the antibodies could last at least six months. The heterologous booster induced a faster and more robust plasmablast response, characterized by activation of plasma cells than the homologous booster. The response was attributed to recall of memory B cells and the de novo activation of B cells. Expanded B cell clones upon booster dose vaccination could persist for months, and their B cell receptors displayed accumulated mutations. The production of antibody was positively correlated with antigen presentation by conventional dendritic cells (cDCs), which provides support for B cell maturation through activation and development of follicular helper T (Tfh) cells. The proper activation of cDC/Tfh/B cells was likely fueled by active energy metabolism, and glutaminolysis might also play a general role in promoting humoral immunity. Our study unveils the cellular mechanisms of booster-induced memory/adaptive humoral immunity and suggests potential strategies to optimize vaccine efficacy and durability in future iterations.

13.
BMC Infect Dis ; 22(1): 632, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858876

RESUMEN

BACKGROUND: The outbreak of SARS-CoV-2 at the end of 2019 sounded the alarm for early inspection on acute respiratory infection (ARI). However, diagnosis pathway of ARI has still not reached a consensus and its impact on prognosis needs to be further explored. METHODS: ESAR is a multicenter, open-label, randomized controlled, non-inferiority clinical trial on evaluating the diagnosis performance and its impact on prognosis of ARI between mNGS and multiplex PCR. Enrolled patients will be divided into two groups with a ratio of 1:1. Group I will be directly tested by mNGS. Group II will firstly receive multiplex PCR, then mNGS in patients with severe infection if multiplex PCR is negative or inconsistent with clinical manifestations. All patients will be followed up every 7 days for 28 days. The primary endpoint is time to initiate targeted treatment. Secondary endpoints include incidence of significant events (oxygen inhalation, mechanical ventilation, etc.), clinical remission rate, and hospitalization length. A total of 440 participants will be enrolled in both groups. DISCUSSION: ESAR compares the efficacy of different diagnostic strategies and their impact on treatment outcomes in ARI, which is of great significance to make precise diagnosis, balance clinical resources and demands, and ultimately optimize clinical diagnosis pathways and treatment strategies. Trial registration Clinicaltrial.gov, NCT04955756, Registered on July 9th 2021.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Hospitalización , Humanos , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Resultado del Tratamiento
14.
Emerg Microbes Infect ; 11(1): 639-647, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35034582

RESUMEN

A COVID-19 booster vaccination is being comprehensively evaluated globally due to the emerging concern of reduced protection rate of previous vaccination and circulating Variants of Concern (VOC). But the safety and immunogenicity of homologous BBIBP-CorV boosting vaccination are yet to be thoroughly evaluated. We conducted this prospective, open-label study in Huashan Hospital using a third 6.5U BBIBP-CorV administered at an interval of 4-8 months following the previous two doses in healthy adults. Safety, anti-RBD response and neutralizing titers against SARS-CoV-2 and VOCs were examined. Sixty-three and forty participants entered the booster and the control group, respectively. A significant increase in IFN-γ SFU per million PBMCs was observed on day 14 against N peptide (20 vs. 5, P < 0.001). On day 14, pVNT GMTs increased over 15 folds of the baseline levels against prototype to reach 404.54 titers and over 9-13 folds against 4 VOCs and continuously increased by day 28. sVNT GMTs increased 112.51 and 127.45 folds by days 14 and 28 compared to the baseline level. Median anti-RBD antibody and IgG level significantly increased from 11.12 to 2607.50 BAU/ml and 4.07 to 619.20 BAU/ml on day 14. On day 14, females showed a significantly higher cell-mediated immune response against S1 peptide. The 7-8 months interval group had a higher humoral response than the 4-6 months interval group. No severe adverse event was reported. A third homologous BBIBP-CorV boosting vaccination was safe and highly immunogenic for healthy adults and broadened participants' immunity against VOCs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Formación de Anticuerpos , Femenino , Humanos , Inmunogenicidad Vacunal , Estudios Prospectivos , Vacunación
15.
Emerg Microbes Infect ; 11(1): 477-481, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35034583

RESUMEN

The massive and rapid transmission of SARS-CoV-2 has led to the emergence of several viral variants of concern (VOCs), with the most recent one, B.1.1.529 (Omicron), which accumulated a large number of spike mutations, raising the specter that this newly identified variant may escape from the currently available vaccines and therapeutic antibodies. Using VSV-based pseudovirus, we found that Omicron variant is markedly resistant to neutralization of sera from convalescents or individuals vaccinated by two doses of inactivated whole-virion vaccines (BBIBP-CorV). However, a homologous inactivated vaccine booster or a heterologous booster with protein subunit vaccine (ZF2001) significantly increased neutralization titers to both WT and Omicron variant. Moreover, at day 14 post the third dose, neutralizing antibody titer reduction for Omicron was less than that for convalescents or individuals who had only two doses of the vaccine, indicating that a homologous or heterologous booster can reduce the Omicron escape from neutralizing. In addition, we tested a panel of 17 SARS-CoV-2 monoclonal antibodies (mAbs). Omicron resists seven of eight authorized/approved mAbs, as well as most of the other mAbs targeting distinct epitopes on RBD and NTD. Taken together, our results suggest the urgency to push forward the booster vaccination to combat the emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunización Secundaria , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/inmunología , Anticuerpos Monoclonales/inmunología , Vacunas contra la COVID-19/administración & dosificación , Epítopos/inmunología , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas de Productos Inactivados/administración & dosificación
17.
Emerg Microbes Infect ; 11(1): 337-343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34935594

RESUMEN

ABSTRACTThe emerging new VOC B.1.1.529 (Omicron) variant has raised serious concerns due to multiple mutations, reported significant immune escape, and unprecedented rapid spreading speed. Currently, studies describing the neutralization ability of different homologous and heterologous booster vaccination against Omicron are still lacking. In this study, we explored the immunogenicity of COVID-19 breakthrough patients, BBIBP-CorV homologous booster group and BBIBP-CorV/ZF2001 heterologous booster group against SARS-CoV-2 pseudotypes corresponding to the prototype, Beta, Delta, and the emergent Omicron variant.Notably, at 14 days post two-dose inactivated vaccines, pVNT titre increased to 67.4 GMTs against prototype, 8.85 against Beta and 35.07 against Delta, while neutralization activity against Omicron was below the lower limit of quantitation in 80% of the samples. At day 14 post BBIBP-CorV homologous booster vaccination, GMTs of pVNT significantly increased to 285.6, 215.7, 250.8, 48.73 against prototype, Beta, Delta, and Omicron, while at day 14 post ZF2001 heterologous booster vaccination, GMTs of pVNT significantly increased to 1436.00, 789.6, 1501.00, 95.86, respectively. Post booster vaccination, 100% samples showed positive neutralization activity against Omicron, albeit illustrated a significant reduction (5.86- to 14.98-fold) of pVNT against Omicron compared to prototype at 14 days after the homologous or heterologous vaccine boosters.Overall, our study demonstrates that vaccine-induced immune protection might more likely be escaped by Omicron compared to prototypes and other VOCs. After two doses of inactivated whole-virion vaccines as the "priming" shot, a third heterologous protein subunit vaccine and a homologous inactivated vaccine booster could improve neutralization against Omicron.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Femenino , Humanos , Sueros Inmunes/inmunología , Inmunización Secundaria , Inmunogenicidad Vacunal , Persona de Mediana Edad , SARS-CoV-2/genética , Vacunación
18.
Front Microbiol ; 13: 1063414, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620063

RESUMEN

Introduction: During the coronavirus disease 2019 (COVID-19) pandemic, the early detection and isolation of individuals infected with severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) through mass testing can effectively prevent disease transmission. SARS-CoV-2 nucleic acid rapid detection based on loop-mediated isothermal amplification (LAMP) may be appropriate to include in testing procedures. Methods: We used 860 nasopharyngeal specimens from healthcare workers of Huashan Hospital and COVID-19 patients collected from April 7th to 21st, 2022, to assess the clinical diagnostic performance of the LAMP assay marketed by Shanghai GeneSc Biotech and compared it to the result of a rapid antigen test (RAT) head-to-head. Results: Overall, the diagnostic performance of LAMP assay and RAT were as follows. The LAMP assay represented higher sensitivity and specificity than RAT, especially in the extracted RNA samples. The sensitivity was 70.92% and 92.91% for direct LAMP and RNA-LAMP assay, respectively, while the specificity was 99.86% and 98.33%. The LAMP assay had overall better diagnostic performance on the specimens with relatively lower C t values or collected in the early phase (≤7 days) of COVID-19. The combination of LAMP assay and RAT improved diagnostic efficiency, providing new strategies for rapidly detecting SARS-CoV-2. Conclusion: The LAMP assay are suitable for mass screenings of SARS-CoV-2 infections in the general population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...